Torsion of the Symmetric Algebra and Implicitization
نویسنده
چکیده
Recently, a method to compute the implicit equation of a parametrized hypersurface has been developed by the authors. We address here some questions related to this method. First, we prove that the degree estimate for the stabilization of the MacRae’s invariant of SymA(I)ν is optimal. Then, we show that the extraneous factor that may appear in the process splits into a product a linear forms in the algebraic closure of the base field, each linear form being associated to a non complete intersection base point. Finally, we make a link between this method and a resultant computation for the case of rational plane curves and space surfaces.
منابع مشابه
Elimination and Nonlinear Equations of Rees Algebra
A new approach is established to computing the image of a rational map, whereby the use of approximation complexes is complemented with a detailed analysis of the torsion of the symmetric algebra in certain degrees. In the case the map is everywhere defined this analysis provides free resolutions of graded parts of the Rees algebra of the base ideal in degrees where it does not coincide with th...
متن کاملThe Aluffi Algebra and Linearity Condition
The Aluffi algebra is an algebraic version of characteristic cycles in intersection theory which is an intermediate graded algebra between the symmetric algebra (naive blowup) and the Rees algebra (blowup). Let R be a commutative Noetherian ring and J ⊂I ideals of R. We say that J ⊂I satisfy linearity condition if the Aluffi algebra of I/J is isomorphic with the symmetric algebra. In this pa...
متن کاملNumerical Implicitization of Parametric Hypersurfaces with Linear Algebra
We present a new method for implicitization of parametric curves, surfaces and hypersurfaces using essentially numerical linear algebra. The method is applicable for polynomial, rational as well as trigonometric parametric representations. The method can also handle monoparametric families of parametric curves, surfaces and hypersurfaces with a small additional amount of human interaction. We i...
متن کاملCubic symmetric graphs of orders $36p$ and $36p^{2}$
A graph is textit{symmetric}, if its automorphism group is transitive on the set of its arcs. In this paper, we classifyall the connected cubic symmetric graphs of order $36p$ and $36p^{2}$, for each prime $p$, of which the proof depends on the classification of finite simple groups.
متن کاملDiscrete torsion, symmetric products and the Hilbert scheme
Recently the understanding of the cohomology of the Hilbert scheme of points on K3 surfaces has been greatly improved by Lehn and Sorger [18]. Their approach uses the connection of the Hilbert scheme to the orbifolds given by the symmetric products of these surfaces. We introduced a general theory replacing cohomology algebras or more generally Frobenius algebras in a setting of global quotient...
متن کامل